Real-time Facial Asymmetry Analysis User's Manual

Takeaki Hidaka

(A) Preface

1. Real-time Facial Asymmetry Analysis (RFAA) is a free software designed for the assessment of facial paralysis.

2. RFAA operates on a Windows ($Microsoft^{(R)}$) computer equipped with a webcam.

3. Both real-time captured videos and pre-recorded videos can be analyzed.

4. RFAA automatically calculates oral displacement ratio (ODR) and eyebrow displacement ratio (EDR).

5. ODR and EDR are defined as shown in the figure below:

ODR = DC'/ AB x 100 (%) EDR = FE'/ AB x 100 (%)

Where

- A and B: Vertexes of the lower two-thirds of the face
- L: Facial midline (perpendicular bisector of AB)
- C and D: Oral commissures on non-paralyzed/paralyzed side
- C': Mirror reflection of point C in terms of L
- E and F: Eyebrow vertexes on non-paralyzed/paralyzed side
- E': Mirror reflection of point E in terms of L

6. Download RFAA.exe to a given folder/directory (e.g. Desktop).

	Return to the top page	日本語English				
	About Us 👻	Research •	Speciality -	Training 👻	Contact Us 💌	
NAR						
	Artificia	I Intellige Facia	nce for the al Paralysi	e Asessme s	ent of	
	Real-time Facial Asymme	etry Analysis (RFA	A)			
	RFAA is an artificial intelligence-based software designed for the assessment of facial paralysis. RFAA enables automated measurement of the facial asymmetry for real-time captured/pre-recorded videos. Downloads					
	Real-time Facial Asymmetry An RFAA Usere's Manual	alysis (RFAA)	- Click to	downlo	ad	
	For more information, se	e our publicatoin.				

(B) Real-time Movie Analysis

1. Double-click the icon to open a console window (may need a few minutes).

- 2. Click the console window to activate.
- 3. Select Real-time movie mode: enter "R" and press Enter key.

4. Select paralyzed side: enter "R" (right) or "L" (left) and press Enter key.

5. A webcam window automatically appears and a measurement is initiated.

6. Terminate the measurement: click the webcam window and press Escape key.

7. The analyzed video (Real-time.mp4) and the time-series data of ODR and EDR (DisplacementRatio.csv) are automatically saved.

8. Post-hoc analysis: time-series data can be analyzed with Excel (Microsoft[®]).

(C) Pre-recorded Movie Analysis

1. RFAA.exe and a pre-recorded movie file should be placed on the same folder/directory.

Racycle Bio		
Biorecons		
RFA	A.exe	
Estanci	recorded movie file	
■	o # 2 🐂 🖻 🖬 L 🌣	593% (∧ 🌏 知 🖟 4× A 21:32 2019/12/27 🍓

2. Activate a console window [as illustrated in (B) 1 and 2].

3. Select Pre-recorded movie mode: enter "L" (load movie file) and press Enter key.

4. Enter pre-recorded movie file name (e.g. Test.mp4).

- 5. Select paralyzed side and start measurement [as illustrated in (B) 4 and 5].
- 6. Terminate the measurement [as illustrated in (B) 6].

7. The analyzed video (Pre-recorded.mp4) and the time-series data of ODR and EDR (DisplacementRatio.csv) are automatically saved.

8. Post-hoc analysis can be performed in the same way as shown in (B) 8.